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Thin-flame theory for a fuel droplet in slow viscous flow 
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The equilibrium burning of a spherical drop of pure non-gaseous fuel in a slow 
convective flow of hot oxidant is examined for Lewis number unity. A Stokes or 
Oseen flow with modified boundary conditions to permit mass transfer at  the 
drop surface describes the velocity field. The method of inner and outer expan- 
sions is then adopted to describe the thermal and mass-fraction profiles under 
the model of a direct one-step irreversible indefinitely fast chemical reaction. 
The thin-flame position and surface mass-transfer rate, both functions of polar 
angle as well as radial position when convection is added to the conventional 
diffusive transport, are furnished in terms of the Peclet number. It is found that 
the interaction of the perturbational free-streaming with the asymmetric vapori- 
zation it induces can lead to drag coefficients in excess of the Stokes value. 

1. Introduction 
The vaporization of a spherical fuel droplet in an infinite expanse of oxidant 

and the subsequent homogeneous combustion is examined for low-Reynolds- 
number flow. An irreversible, indefinitely fast, one-step chemical reaction is 
adopted (Burke & Schumann 1928) so the burning zone collapses to a mathe- 
matical interface where the reactants meet in stoichiometric proportion. Of 
particular interest is how small convective transport augments the purely diffu- 
sively controlled mass-transfer rate of previous analyses (Godsave 1953; Gold- 
smith & Penner 1954). 

Williams (1 960) has indicated that quasi-steady vaporization at unit Lewis 
number, with the droplet temperature just below boiling, serves as an excellent 
approximation. Furthermore, surface-tension effects, droplet internal circula- 
tion, and droplet shape distortion are here negligible. For analytic convenience 
incompressibility and constant fluid properties are adopted. 

The conventional non-dimensionalized formulation of the problem after 
Schvab & Zeldovich (Williams 1965) is 

(1)  

(2) 

(3) 

p = const.,V.u = 0, 

au V x ( V x u )  
- = -  - VP, ax R 

L(Fo + F )  = L(FF - To) = 0, 

where x = rcose (see figure 1) and, if E = U,/uD, 
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by azimuthal symmetry. The boundary conditions are at r + 00: 

and at  r = 1 :  
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Fo+(Fo)m, F-tT,, u+6 

+ 
FIGURE 1. Co-ordinate system for flow past a spherical droplet. 

Equation ( 6 )  is an adiabatic vaporization condition; ( 7 ) ,  a statement that the 
droplet remains pure fuel; and ( 9 ) ,  the Clausius-Clapeyron equation. Initially (9) 
is replaced by 

The radial velocity at the droplet surface up( 1,8,  e) is to be specified in the course 
of solution and is in this sense an eigenvalue. According to the Burke-Schumann 
model 

T(l,O,€) = Fa(8,€) .  ( 9  a )  

- 

(10 )  

Yo = 0 (1 < r < r * ) ,  (11 )  

YF = 0 (r* < r 6 m), 
- 

where r*(8, e)  is to be determined by applying ( 1 0 )  and (1 1 )  to the solution of (3). 
The technique invoked here is that of inner and outer expansions, used by 

Proudman & Pearson (1957)  to obtain the velocity field and by Acrivos & Taylor 
(1962)  to obtain the temperature field for slow viscous flow past an isothermal 
sphere. However, finite interfacial velocity has not previously been carefully 
examined in relation to heat and mass transfer at low Reynolds number. 

The procedures developed here extend directly to many other cases of heat and 
mass transfer for small droplets in slow flow, such as the growth of raindrops by 
condensation or their decay by evaporation in an almost steady atmosphere. 

A partial list of symbols used throughout this article is given below: 
b stoichiometric coefficient of oxidant; 
D 
d stoichiometric coefficient of fuel; 
En 
Em, 
AH, 

mass-transfer coefficient in Pick’s first law; 

a sequence of eigenvalues related to mass transfer [see equation ( 1 6 ) ] ;  
another sequence of eigenvalues related to En [see equation ( 2 5 ) ] ;  
specific heat released through combustion: mo bhf + m,dh,F- mph,Pp; 
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h,O, hg, hg specific heats of formation of oxidant, fuel, and product, respectively; 

m bmo + dm,; 
mF, mo, mp molecular weight of fuel, oxidant, and product, respectively; 

LIAH,, where L is the specific heat of vaporization of fuel; 

pressure ; 
stoichiometric coefficient of product; 
Legendre polynomial of degree m; 

terms in the series for p, 
terms in the series for 5 

Reynolds number; here U,a/v; 
T/ (AH,/mc,), non-dimensionalized temperature ; 
(u?, ue, 0 )  macroscopic net velocity (non-dimensionalized by Urn); 
[m/(dm,)] YF, stoichiometrically adjusted mass fraction of fuel; 
[m/(bmo)] Yo, stoichiometrically adjusted mass fraction of oxidant. 

[ ~ - ~ ~ + ~ ~ - ( ~ o ) o o l / [ ~ ~ ' , , - ~ * - ( ~ ~ ) m l ;  

FF-F0+(F&; 

Greek symbols 

Peclet number; here U,a/D; 
cos ti; 
density; also strained radial co-ordinate (p  = cr) ;  
( ~ m m ,  cp/R) where here only R is the universal gas const. 

Superscripts and subscripts 

non-dimensionalized or stoichiometrically adjusted; 
fuel; 
inner or outer expansion; 
oxidant ; 
evaluated at the thin flame. 

2. Flow 

If u = V x 6, then (2) becomes [ r sin ti] 

P,(pl) dpl ,  in which Pn(p) signifies the Legendre polynomial 

of degree n. If 
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then application of equations (5), (8), and (15) to (14) gives 
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3. Inner and outer expansions 
Use of equation (16 )  in (3 )  yields [p signifies either (Fo + p )  or (FF - To)] 

The inner expansion for p(r ,  p, E )  emphasizes the dominance of molecular 
transport near the sphere 

while the outer expansion expresses the equal roles of convection and conduction 
far from the sphere 

00 

F ( ~ , P , € )  = x gn(E)  -E,(P,P) (P = ( 1 9 )  
n= 0 

Equation (9a)  is written (pmn are regarded as given) 

For convenience p may be re-defined as 

At r+co the boundary conditions require that pn = 0 for all n. Also, To = 0 at 
r = 1 for parameter values of interest. Since once can anticipate 

the boundary condition (20)  becomes 
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One can also anticipatef,(s) = 1 and hmo = Fmo = 0 for m >. 0 ;  i.e. the spherically 
symmetric result of Godsave is recovered for the lowest-order inner solution. 
Hence 

Further, it  is adopted that 
m 

so from ( 1 5 )  
m m  

It should be noted that only the group e u r ( l , p ,  E )  appears in the boundary-value 
problem. In conjunction with previous anticipations, Em, = 0 for rn > 0 so 

% ( L P , 4  = Eoo+o(l). (27)  

The eigenvalue u,.( l , p ,  e) is not singular as e+ 0; the dimensional form of (27) is 

Equation (6) becomes 
mL 

Too - Tm - (Qm 
Emn- 

dhmn(1) - _  
dr 

4. Lowest-order outer solution 

convection by the undisturbed freestream 
If p = er is substituted into ( 1 7 ) ,  Po is governed by an equation involving 

Following Lamb (1945),  
G(P, p) = G&P, P )  e$PF, 

or (V:-$)Go = 0. 

By separation of variables and the requirement of boundedness at inh i ty  

where K,+t(*p) is a half-order Bessel function given by 

As p - f  0, to lowest order 

- (2k ) !  
P k=O k ! p k  

p o + m  [ 1 +  $p(p- 1 )  + ...I. c Ck --Pk(P). (35) 

The C, and go(€)  are identified below by matching to the inner solution. 
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5. Lowest-order inner solution 
For no mass transfer (Emn = 0 for all m,n) Acrivos & Taylor (1962) found 

to(€) = 1 and fl(e) = e. Under this ordering the lowest-order inner equation 
becomes, from equation (I?), 

Seeking solution in accordance with (22)' 

d2hmo r2 __ + (2r - E,,) 'A0 - m(m + 1 )  h,, = 0. 
dr2 dr (37) 

For E,, 9 0,  r = 0 is an irregular singular point. The method of Frobenius gives 
an indicia1 equation for solution in ascending powers of r about r = 0 to which 
there is only one root. The following polynomial arises: 

m 

n=O 
hg& = C anrn, 

so the second set is 

where b, = ( b, = ( -  ) m - n ~ n  (n 2 1) .  (44) 

When Eoo+ 0 equation (36) reverts to Laplace's equation. Since the solution (38) 
goes to rm, the second solution may be taken as 

m m 

exp ( -Eoo/r) C bnrn- C a n y n )  (45) 
n=1,3, ... n= 0 n= 0 

if a form which goes to r m - l  for E,, = 0 is desired. However, the special case 
E,, = 0 will be disregarded here and the form (43)-(44) adopted for the most part. 

The solution to (36) subject to (24) results in 
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As r -too the term in brackets in (46) goes as rm. To match (35) and (46) one takes 
g o ( € )  = e7 A ,  = 0 for m 2 0, Ck = 0 for Ic > 0 and 

nCo = - E,,/{exp ( - E,,) - l}. (47) 

The lowest-order inner solution is uniformly valid in r :  

The classical spherically symmetric theory of Godsave (1953) has now been 
recovered. 

The lowest-order outer solution is now known to be 

which is the spherical source solution when uniform convection is present. The 
co-ordinate scaling has reduced the sphere to a point disturbance to lowest order. 

When E,,+O equation (48) shows that the lowest-order inner solution goes to 
l / r  and the lowest-order outer by (50) becomes p-lexp [*p(,u- l)]. These are the 
forms given by Acrivos & Taylor (1962) in the absence of mass transfer. 

6. The next-order inner solution 
Expanding the exponential in (48) and letting p = er, one finds that none of 

the terms beyond the first can match to the solution (50), as expanded for 
small p 

The next-to-lowest-order term of the inner expansion, which matches to the 
( p -  1) term of (51), is now developed. 

From equations (17), (22),  and (48)-since f, = e is anticipated- 

(52) 

It is simple to show on the basis of asymptotic forms for large r that, unless 
h,, = 0 for m 2 2, the asymptotic ordering of the inner series in e is destroyed. 
The plausible result is that, just as the lowest-order inner solution involved only 
Po, the first modification involves only Po and I?,. 

18 Fluid Mech. 26 
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By variation of parameters 

where A and B are constants of integration. Applying (23) to (53) 

A+B(-  exp(-Zoo)-1 Po1 
Boo 1 = Too-Tm-(Yo)m (54) 

Matching (53) and (51) 

Applying (29) to (53) 

From (54) to (56) 
B exp ( - E,,) [Too - Tffi - = EmE,,. (56) 

E O O  exp ( -Eoo) Pol(exP ( - Eoo)  - 1) - & E o o r ~ o -  T m  - (70)ffi1} . 
(57) 01- 

x exp ( - E o o )  [Too - T m  - (70)ml 

Since E,,> 0 and + > Too usually, E,, > 0 necessarily if Pol < 0. But, 
if Too+- TB, To, < 0. Thus the net effect of the first perturbation over all ,LL is to 
augment the mass transfer over the classical, purely diffusive value (see the 
Appendix). 

If K ,  and K ,  are constants of integration, again by variation of parameters 

hl, = [&+ aJ1(r)l (r - @,a) + [K, + aJ,(r)l exp ( - ~ , o / ~ )  (r + Woo), (58) 

where Jl(r) = 

&rz+ (p- &Eoo) r -  &Eo,plnr - - +- r Eooyl 4r2 ' 

(lnt) e-tdt = 0.577215665 ... (Euler-Mascheroni constant), 

~ i (  - x) = dx, (exponential integral). 
X1 

-!b? [ 1 -* + 3y + E,, (Kl + K 2 )  + O( l/r). (62) r E,, Ei0 2a 
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Applying (23) to (58) and matching (51) and (62) gives 

Equation (29) applied to (58) gives a relation for Ell: 

EK,+aJ1(1)1+ [K2faJ2(1)1exP(-Eoo) [1 fEOO(1 +4EoO)l+G3J;(1) 

- (65 )  
+ G 2 J i ( 1 )  = - ZmE,, 

Too- Fco - K ) a  
The prime in (65) signifies differentiation with respect to r.  

A uniformly valid expression for p is 

7. Modification of the thin-flame position 
To find r*(O,e), one must solve Lij = 0 where ij = FF-Fo+ Again the 
method of inner and outer expansion is invoked, and in view of results of 
$05 and 6 

W - 
I 4  4 = c f n ( 4  4n(r, P )  = moo(r) + €[rnOl(T) 4 ( P )  + mll(r) Pl(P)l+ 4 E ) .  (68) 

n=O 

It is easy to show 

moo = BICexP ( -Eoo/r) - 1l/Eoo, Bl = - EOO[% + (T0)wl .  (69) 

From equations ( l o ) ,  ( l l ) ,  (49), and (69) well-known results for the convection- 
free case (Williams 1965) are recovered: 

r* = ~ ~ , / l n  [I +((FO)w/aF)~ = In [ 1 + -O (H ) w + p a - T o o  
Grb 

(71) 
Analogous to (53), if M and N are constants of integration, 

mol = N + N  (exp(-Eoo'r)-l -Eol[a,+(~o)w] 
Eoo 

18-2 
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Matching to (67) 

) 2 OO]. (73)  
exp ( - Eoo) - 1 

1 + -______ - 1E 
E O O  

8. The Clausius-Clapeyron equation 

the adopted 

is compatible with 

Because equation (20) was used in place of (9), it  is necessary to be certain that 

F ( l , p , e )  = T,,fB(To1+pT11) +o(e) (80)  

T R ( 1 , P d  = - ~ ~ ~ ~ m + ~ o o ~ ~ ~ + ~ ~ ~ O l ~ ~ ~ + P ~ l , ( ~ ) l + O ( E ) .  (81) 

Substituting these expansions into (9), expanding in B ,  and then adopting a 
hopefully convergent iterative procedure, one arrives a t  the following for 
assigning improved values for Too, Tol, and Pll: 

9. Extension to higher Reynolds numbers 
It will now be shown that the results found for R = 0 may be extended 

unchanged at least to such finite R as obey R = O(B) where e < 1. 
For small R, Oseen (Lamb 1945) proposed a linearized version (2) of the 

Navier-Stokes equation as an adequate approximation. Proudman & Pearson 
(1957) later showed the Oseen equation did yield a uniformly valid lowest-order 
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approximation to the Navier-Stokes equation, so satisfaction of boundary con- 
ditions at the spherical surface up to O(R)  had meaning, but more exact solution- 
though possible with enough ingenuity-was rigorously meaningless. 

Accordingly, in view of 

€%(LP,4  = E o o + " ~ , , + E , , ~ , )  +d4, (85) 

solution t o  (12) is taken in the form 

where A,, B,, and C, are independent of R but not necessarily of e. For R < 1, a t  
r + l  11. = C,(p - 1) + (Qrz + (A,/r)  +- 423,~) (1 - p2) + O(R) .  

If C, = - E,, A ,  = $(El + l), and B, = *(El - 3), then the Stokes solution (16) 
and the Oseen solution (86) are the same so far as the role they would play in the 
Schvab-Zeldovitch integrals 

(87) 

and -4: for terms O(s)  or larger. 

4.5 

4.4 

4.3 

4.0 

3-9 

3.7 I I I 1 I I I I I I I 
- 1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

r" 

FIGURE 2. Modification of the thin-flame position as a function of angle for 
several values of the Peclet number E .  

10. Numerical calculations 
As a typical case involving burning of a hydrocarbon droplet in a hot oxidizing 

gas, the following values were assigned: m = 186, aI = 3.207, TB = 0.0593, 
T, = 0.25, m, = 58, (To), = 1-685, L = 0*00169, and X = 0.491. It is found after 
five iterations using (82)-(84) that Too = 0.0576, To, = - 0.1606 x and 
TI, N 0.1424 x 10-9. Hence the surface temperature of the purely diffusive trans- 
port case, which is about 3 per cent below boiling, is absolutely negligibly modified 
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by convection. In  the Appendix it is shown that the ratio of the net mass-transfer 
rate with small convection to that without goes as [1+ 4. + o(e)] .  Furthermore, it 
is found that E,, = 1.9422, E,, = (+Boo), and El, = - 0.7145. 

The local mass-transfer rate increases linearly in ,u from a minimum at the 
downstream point of the droplet to a maximum at the upstream point; for 
e = 0.1, the variation is from eur = 1.9679 to cur = 2.1108. Because El, < 0, the 
Appendix shows that the ratio of the drag for the flow with surface mass transfer 
to the drag without is 1.2382. 
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FIGURE 3. Variation in the stoichiometrically adjusted mass fraction of fuel yF 
with angle at the droplet surface. 
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FIGURE 4. Profiles of the dependent variables with radial position for 
E = 0.1 andp = 1.0. 
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A plot of the thin-flame position for several values of E (figure 2) reveals that 
the flame is drawn closer to the droplet, and given a wake-like distortion, as 
€increases. Anindication of the limit of validity of the theory may be revealed by 
the fact that as E t 0.3 the point of closest proximity of the flame to the droplet 
moves downstream from the forward stagnation point. Further results indicating 

2.8 

3-3 
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- 1.2 

- 1.0 

- 0.8 
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- 0.4 

- 0.2 

i 

I 

0 
T 

FIGURE 5. Profiles of the dependent variables with radial position for 
8 = 0.1 and ,u = - 1.0. 

modifications because of convection in dependent-variable profiles are given in 
figures 3-5; the so-called adiabatic flame temperature T(r*,,u, E )  = 1.1802 for all 
,u for all E < 1 .  
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Appendix. Net mass transfer and drag coefficient 
If ?h is the net transfer of mass (dimensional) at  the droplet surface 

1 

-1 
?fi = 2 n p a 2 ~ ,  1 a,( 1 ,  p, €1 dp. (A 1) 

Since 

n= 0 

If To' = 0, from equation (571, E O 1 / ~ , ,  = 4. 
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There is no net force on the droplet for the radially symmetric case E = 0. 
When E + 0,  there is no lift because of the azimuthal symmetry and the drag 
coefficient is given by (r = 1) 

where Px is the component of force parallel to the free-stream. Since 

-$ = ( 2 + B o 1 )  (p+ 1)+ ( r ' + T + - - r )  Ell+l  E1,-3 (T) p2-1 +o(l) ,  (A 5 )  
2 

and since P is a harmonic function bounded at infinity 

A B  
r r2' 

P = Po+-+- + o ( l ) ,  

where Po is an arbitrary pressure datum. Prom equation ( 2 ) ,  when &/ax = 0 
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